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The least squares local energy method is applied to the helium atom in greater detail in a 
formulation which can easily be extended to more complicated atoms. The energies of the 
l 1S and 23S states are calculated to be - -  2.9025 I t  and - -  2.1753 II  respectively. These values 
are in excellent agreement with the non-relativistic values of - -  2.9037 H and - -  2.1752 t t  
calculated by P~EnIS .  

Le calcul de l'6nergie locale par ]a m6thode des moindres carr6s est appliqu6 plus en d6tail 
l 'atome d'h61ium, darts une forme qui s%tend ais6ment ~ des atomes plus compliqu6s. Les 

6nergies des 6tats t 1S et 2 8S se ca]culent s - -  2,9025 et - -  2,1753 u. a., respectivement. Ces 
valeurs sont en excellent accord avec les valeurs de - -  2,9037 et - -  2,i752 u. a. (sags rela- 
tivit~) calcul6es par PEKEaIS. 

Die Methode, die Varianz der ,,lokalen Energie" zu minimisieren, wird in ether leicht auf 
kompliziertere Atome zu erweiternden Form ausffihrlicher auf das tIeliumatom angewandt. 
Die Energien des t 1S- und des 2 ~S-Zus~andes werden zu - -  2,9025 bzw. - -  2,t753 at. E. 
berechnet. Diese Werte stimmen ausgezeichnet mit den yon PE~EnIS berechneten nicht- 
relativistischen Werten yon - -  2,9037 bzw. - -  2,1752 at. E. iiberein. 

A. Introduction 
The  h e l i u m  a t o m  can  be used  as a m o d e l  for  t e s t i n g  some  of  t h e  a p p r o x i m a t i o n s  

we w o u l d  l ike  to  m a k e  in leas  t squa res  loca l  e n e r g y  ca lcu la t ions  o f  t h e  l i t h i u m  

a t o m  a n d  p e r h a p s  beyond .  De ta i l s  o f  t h e  m e t h o d  can  be  f o u n d  e l sewhere  [3]. 

Th is  r e p o r t  descr ibes  t h e  ca l cu l a t i on  o f  t h e  energ ies  of  b o t h  t h e  g r o u n d  s t a t e  

( i l S )  a n d  t h e  first  exc i t ed  s t a t e  (2 3S). The  t r i p l e t  s t a t e  o f  he l i um is a p a r t i c u l a r l y  

good  m o d e l  o f  m o r e  c o m p l i c a t e d  a t o m s  since t h e  two  e lec t rons  are  de f in i t e ly  in 

d i f fe ren t  shells.  I n  exc i t ed  s inglc t  s t a t e s  ~he e lec t rons  are  also in d i f fe ren t  shells 

b u t  t h e  v a r i a n c e  m i n b n i z a t i o n  e q u a t i o n s  are  d i f f icul t  to  solve  for  t h e  h ighe r  roo t s  

which  co r r e spond  to  t he se  levels .  

A l t h o u g h  t h e  f o r m u l a t i o n  used  here  is n o t  t h e  n a t u r a l  one  for  h e l i u m  i t  is 

capab le  o f  be ing  e x t e n d e d  to  a t o m s  c o n t a i n i n g  m o r e  e lec t rons .  

B. Wave Functions 

T h e  sp in  p a r t  o f  t h e  w a v e  f u n c t i o n  for  two  e lec t rons  s i m p l y  f ac to r s  out ,  l e a v i n g  

o n l y  t h e  space  p a r t  ~ to  be cons idered .  W e  can wr i t e  th i s  as 

= ~ ( ~ , 2 )  _+ ~(2,~) (t~) 
= (t • Pl~)q~(l,2) ( tb)  

( A- ) --  s ingle t ,  

( - -  ) --  t r ip l e t ,  

P Ie  = i n t e r c h a n g e  coo rd ina t e s  o f  e l ec t rons  t a n d  2. 
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The function ~ (1,2) can be constructed of products of Slater-type orbit.Ms multi- 
plied by a flmction of the interelectronic distance; 

(p (1,2) = a sb2Zl~ 

=: (rlnl e-~lrl)  (r2n2e-~2r2)rl~a (2) 

Notice that  when a = b (n 1 = n 2 and ~1--~2) the triplet function vanishes. 
A more general trial function would be 

= ~. c~ ~ (3) 
i 

where the ~i's are defined by Eq. (l) and Eq. (2) and the e~'s are variation para. 
meters determined by finding the minimum in the variance of the local energy 
with respect to each ci. 

C: Local Energy Formulas 

The formulas listed below for the helium atom local energy are equivalent to 
those used by others and follow directly from the many-particle equation derived 
by F~OST [2], assuming infinite nuclear mass. 

1 
e (t,2) = ---~" (A 1 + A '2 ) - -A  a + B 1 B  8 e08'013 

+ B~B  a cos O~a + V, 

where At = ~  + (n~ + t) ~ ~ / 

B~=~ , - - -~  ; i = l  o r 2 ;  

A3 = n3 (n3 + 1)/r32; Ba = n3/ra 

cos Oia = (r, ~ + ra~--rj~)/2r, ra 
i t 1 

q = nuclear charge. 

ct o~-  nY_ 0,2) 
I.fS~ , . , - -  ~(1,2) 

then H~ (1,2)= s (1,2) ' ~  (t,2) 

and Hq  = HT (1,2) + H~ (2,t) (4a) 

= (1 _+ P~,) H ~  (1,2) (4b) 

Equations (tb) and (4b) express quantities which must be evaluated over a set of 
points. 

D. Coordinates and Points 

In a previous calculation on helium we selected a set of points and weighting 
coefficients in interparticle coordhlates by the method of Gauss quadrature [4]. 
Since one can easily write trial functions and the Hamfltonian in interparticle 
coordinates, this system is a natural one to choose. Unfortunately, for an atom 
with more than two electrons the non-differential part of the volume element, 
which we use as part  of the total weighting factor for each point, turns out to be 
unbearably complicated in interparticle coordinates. To avoid this we chose the 
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Gauss quadrature points in spherical coordinates and evaluated the weighting 
factors using 

dT ---- r12r~ ~ sin 012 dr1 dr~ d012, 

and determined the value of the interelectronic distance r~  - r3 for each point from 

ra ~ ~ rl ~ + r ~ - -  2r~ r 2 cos 0~2. 

Actually we compute points in h and r~ from the Gauss-Laguerre quadrature 
tabular  data  and points in 012 from the Gauss-Legendre data by means of simple 
transformations [4, 6]. 

Because the points ~ _< 013 < 2~ are merely the reflection of those 0 _< 0~2 
_< 7~ we considered only the latter gToup. We also eliminated all points where 
r~ < r~, weighting those where r~ > r 2 doubly since symmetry  tells us tha t  the 
two groups yield identical configurations. 

I f  Pr = number of points in radial coordinates, 
Po = number of points in angular coordinate, 

then the total  number  of points Ntot is given by 

Ntot = Pr ~ Po 

The number  of points, reduced by  the symmetry  discussed above, is 

1 
NSR = -~ Pr (Pr -t- 1) Po. 

In  these calculations the point distributions Pr = 5, Po = 4  and Pr  =6,  P 0 - 6  
were used to produce sets of 60 and 126 symmetry  reduced points respectively. 

E. Results 

I .  Singlet State 

1. Same ~ for Same Shell. Using a wave function of exactly the same form as 
tha t  of our previous He atom calculation [4] and using the same distribution of 
points among the coordinates, we now get E =- -2 .8968  Hartrees,  V = t .5 l  • l0 -~ 
compared with E = - -2 .  897i H, V = 1.79 • t0 -2 before, which is good agreement 
considering the different t rea tment  of Gauss points and weights. 

In  the present calculation many  additional terms were included in the trial 
function to aim at higher accuracy and to study the convergence of the computed 
energy toward the observed as more terms are added. [Iab. i shows these results. 
The c~'s are the coefficients of the unnormalized wave function and nl, n~, n a are the 
powers of r 1, r 2, r 3 respectively. 

In  the calculations of Tab. i the exponential parameter  ~ ~ t.816 was not 
optimized with respect to the variance. Later  an a t tempt  was made to find an 
approximate opthnum value. The results of this search were: 

a) The op t imum value of ~ does not change smoothly as more terms are added 
to the wave function. 

b) For long wave functions (10 terms or more) the energy and variance are 
rather  insensitive to changes in ~. A reasonable value seems to be ~ = ~ / ~ )  

7* 
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Table 1. 1 1S Helium Atom Energy and Wave Function, 60 Gauss Points 
~1 ~ ~ = J.816 

E,a~ = - -  2.9025 Hartrees, V = J.6 • 10 -4 H 2, go~ = - -  2.9037* 

i n l n 2 n  8 el i ninon 3 G~ 

J 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
i2 
13 
14 
15 

0 0 0  
0 0 t  
O02 
1 0 0  
1 0 1  
i 0 2  
2 0 0  
2 0 1  
2 0 2  
l l 0  
1 1 1  
1 1 2  
1 2 0  
1 2 1  
t 2 2  

1.000 
0.4849 

--0.2694 
--0A380 
--0.0384 

0.3070 
0.2673 

--0A923 
--0.0861 
--0.2841 

0.2628 
--0.5384 
--0.0255 

0.0680 
0.2093 

t6 
([7 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

2 2 0  
2 2 1  
2 2 2  
3 0 0  
3 0 1  
3 0 2  
3 J 0  
3 1 1  
3 1 2  
3 2 0  
3 2 1  
3 2 2  
3 3 0  
3 3 1  
3 3 2  

--0.0392 
--0.0561 
--0.0924 

0.0261 
0.0277 
0.0088 

--0.0499 
--0.0035 
--.0.0279 

0.0382 
--0.002J 

0.0138 
--0.0117 

0.0028 
- -  0.0022 

C. L. PEKERIS, Phys. Rev., 112, 1649 (1958). 

t.7040, which is based on the asymptot ic  solution of the wave equat ion for an  
a tom 

~ = - - 2 E  (5) 

with $i =~2" No extensive calculations were carried out  using this value. 
2. Different ~'s for Same Shell. ~IYLLERAAS [5] and  ECKAi~T [1] were the first 

to show tha t  using different exponent ia l  parameters  for electrons in the same 
shell produced an improvement  in  the calculated energy. S~r and  Lo~wDIs  [7] 
explained this as adding some measure of correlation to the wave function.  I n  the 
present  work an  a t t emp t  was made to s tudy this effect with the least sqnares 
local energy method  using correlated wave functions.  The results indicate t ha t  for 
shorter wave funct ions one does indeed obta in  lower variances and  improved 
energies when one incindes different $'s in the two ground state orbitals, bu t  for 
longer wave funct ions (10 terms or more), the effect is no longer impor t an t ;  in  
fact m i n i m u m  variance occurred when ~1 = ~2. This is easily explained by  the fact 
the wave funct ions used here already contained all impor t an t  correlation effects 

from the numerous  rx~ terms. 

I I .  Triplet  State 

1. Same ~ for Different Shells. Requir ing ~1--~2, a search was made for an  
approximate ly  op t imum single ~ for the lowest aS state. The results are similar to 

those of the iS  case: here a good value seemed to be ~ = ~ / ~ E ( S ~  = t.4749. 
Fu r the r  calculations employed this value. The results, using a 30 t e rm tr ial  
fnnet ion  and  126 points,  were E = - -  2.169~[ EIartrees, V = 4.9 x 10 -~ while the 
observed result  is E = - -  2.1752 I t .  Notice tha t  the error in the energy computed 
here is large compared with t ha t  of the iS  calculation, yet  the averages were made 
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over more than twice as many  points and the wave function included terms of 
fourth power in the radial coordinates. 

2. Different ~'s for Different Shells. Calculations showed tha t  for the aS state 
using different ~'s for the different orbitals lowers the variance and improves the 
energy, even for long wave functions. 

At this point another interesting problem was solved. The formula for the 
Gauss-Laguerre quadrature is 

o i=1 

where Hj = Gauss weighting coefficient for abscissa a i and f(x) is a polynomial 
in x. Notice tha t  the exponential appearing on the left of Eq. (6) is included in the 
weighting coefficients on the right. The functions ~v (t,2) are exponentials times 
polynominals but  after antisymmctrization and ff different ~'s are used for the 
two orbitals the exponential part  cannot be factored out completely. 

Cfl == e--~l rl e - - ~  ?.2 r I nl r 2 n2 - -  e--~2 ?.1 e--~x ra Vl na r2 nl 

= e--~l (rl + ?'2) [e (~a-~l)  ?'a r l n l  r~n* - -  e-- (~a-~t )  r~ r n~ r~ n~] (Ta) 

o r  

: C,--~2 ( r l  ~- ?'2) [~-- (~1--~2) ?'1 ~']?~1 ~'2n2 - -  e-- (~1--~2) F2 r1@2 r2nl] (Tb)  

I f  one persists in using different ~'s beyond this point one must  include par t  of the 
exponential in the f(x) and ignore the fact that  the equality in Eq. (6) no longer 
holds. The question is : Which ~ should be factored out? Should we follow 7a or 7b ~. 
After some reflection one would favor the smaller of ~1 and ~2. I f  ~ 1 %  ~2, then 
e-~l > e-~a and the Gauss weighting factors would take care of the larger part  of 
the whole exponential while the e-(~a-r remaining with the polynomial will 
be small. A test  calculation, using the scheme ofEq.  (7a), gave values of the energy 
which tended toward the observed energy quite smoothly, as additional terms were 
added to the wave function, while erratic oscillations were obtained by proce- 
dure 7b. 

A search for approximate opt imum values of ~ and ~ with respect to the 
variance was simplified by  considering the useful Eq. (5). l~eqtfiring Eq. (5) to 
hold for -~1 $ ~2, Um optimization problem reduces to one in a single parameter,  
really At  = ~2~ ~1- Using t2 term functions the minhnum variance was found near 
zJ~-- or = t and in further computation the values ~ ~ 0.86603 and ~.o - i.8975 were 
used. Tab. 2 contains the results of these calculations. The energy is in excellent 
agreement with experiment. 

F .  C o n c l u s i o n s  

Some interesting conclusions can be drawn from the results of this works: 

i. The least squares local energy method is capable of  producing energies 
which axe in remarkably good agreement with the observed values, particularly 
when many  terms are included in the trial function. 

2. Different ~'s should be used in writing orbitals for electrons in different shells. 
One should not think of this as a simple correlation effect but as a genuine improve- 
ment  in the orbital description. 
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3. The leas t  squares  local energy me thod ,  selecting poin ts  b y  Gauss ian  quadra-  
ture ,  is capable  of  handl ing  the  different  ~'s even though  the  sums over  the  Gauss 
poin ts  do not  correspond to the  integrals .  

4. A useful  device for select ing reasonable  values  of  the  exponen t ia l  pa r a me te r s  
is the  resul t  of  the  a sympto t i c  solut ion of  the  wave equa t ion  for an a tom.  

G. (~omputations 

The ac tua l  computa t ions  were carr ied  out  on the  I B M  709 compute r  a t  the  
Nor thwes te rn  Un ive r s i ty  Comput ing  Center  using programs  wr i t t en  in the  
F O R T R A N  language.  

As an  example  of  the  comput ing  t ime  : i t  t ook  a b o u t  14 minu tes  to  go th rough  
the  complete  calculat ion,  summar ized  in Tab.  2, of  the  bes t  30 t e rm  aS funct ion  
over  126 points .  
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Table 2. 2 3S Helium Atom Energy and Wave Function 126 Gauss Points 

~1 -= 0.86603, $2 i.8975 
E ~  = - -2A753 Hartrees, V = 1.5 • 10 -~ H 2 Eob~ = --2.1752" 

i nln2n a C~ i nln2n 3 C~ 

t 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
t4  
15 

0 0 0  
0 0 1  
0 0 2  
1 0 0  
t 0 1  
1 0 2  
2 0 0  
2 0 1  
2 0 2  
1 1 0  
1 1 1  
1 1 2  
2 t 0  
2 1 1  
2 1 2  

1.0000 
0.6214 
0.0645 

--1.0705 
--0.6711 
--0.0226 
- -0 . t045  

0.1950 
0.00025 

--0.0558 
--0.0390 

0.0103 
0.1602 

--0.0239 
--0.0011 

16 
17 
t8  
t9 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3O 

2 2 0  
2 2 1  
2 2 2  
3 0 0  
3 0 i  
3 0 2  
3 1 0  
3 1 t  
3 1 2  
3 2 0  
3 2 1  
3 2 2  
3 3 0  
3 3 1  
3 3 2  

--0.0090 
0.0028 

--0 .000i6 
--0.0582 
--0.0191 

0.00041 
--0.0093 

0.0042 
--0.00009 

0.0011 
--0.00054 

0.00004 
--0.00003 

0.00002 
--0.000002 

* C. L. P~KERIS, Phys. Rev. 115, i216 (1959). 
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