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The least squares local energy method is applied to the helium atom in greater detail in a
formulation which can easily be extended to more complicated atoms. The energies of the
118 and 238 states are calculated to be — 2.9025 H and — 2.1753 H respectively. These values
are in excellent agreement with the non-relativistic values of — 2.9037 H and — 2.1752 H
calculated by PEKERIS.

Le calcul de I'énergie locale par la méthode des moindres carrés est appliqué plus en détail
4 I'atome d’hélium, dans une forme qui 8’étend aisément & des atomes plus compliqués. Les
énergies des états 118 et 2 38 se calculent & — 2,9025 et — 2,1753 u. a., respectivement. Ces
valeurs sont en excellent accord avee les valeurs de — 2,9037 et — 2,1752 u. a. (sans rela-
tivité) calculées par PEKERIS.

Die Methode, die Varianz der ,,lokalen Energie‘* zu minimisieren, wird in einer leicht auf
kompliziertere Atome zu erweiternden Form ausfithrlicher auf das Heliumatom angewandt.
Die Energien des 1 18- und des 2 3S-Zustandes werden zu — 2,9025 bzw. — 2,1753 at. E.
berechnet. Diese Werte stimmen ausgezeichnet mit den von PuKERIS berechneten nicht-
relativistischen Werten von — 2,9037 bzw. — 2,1752 at. E. iiberein.

A. Introduction

The helium atom can be used as a model for testing some of the approximations
we would like to make in Jeast squares local energy calculations of the lithium
atom and perhaps beyond. Details of the method can be found elsewhere [3].
This report describes the calculation of the energies of both the ground state
(11S) and the first excited state (2 38). The triplet state of helium is a particularly
good model of more complicated atoms since the two electrons are definitely in
different shells. In excited singlet states the electrons are also in different shells
but the variance minimization equations are difficult to solve for the higher roots
which correspond to these levels.

Although the formulation used here is not the natural one for helium it is
capable of being extended to atoms containing more electrons.

B. Wave Funections

The spin part of the wave function for two electrons simply factors out, leaving
only the space part ¢ to be considered. We can write this as

¢=p(1,2) £p(2,1) (1a)
=1+ Pp)g(1,2) (1b)
(- ) =singlet,
(— ) =triplet,

P, =interchange coordinates of electrons 1 and 2.
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The function ¢ (4,2) can be constructed of products of Slater-type orbitals multi-
plied by a function of the interelectronic distance;

@ (1,2) = a1by 115
= (r;M1e-C111) (rym2e~Car2)ryys (2)

Notice that when a=Db (#, —n, and @1 =) the triplet function vanishes.
A more general trial function would be

@ =;Gz @ (3)

where the g;’s are defined by Eq. (1) and Eq. (2) and the ¢;’s are variation para-
meters determined by finding the minimum in the variance of the local energy
with respect to each c;.

C. Local Energy Formulas

The formulas listed below for the helium atom local energy are equivalent to
those used by others and follow directly from the many-particle equation derived
by FrostT [2], assuming infinite nuclear mass.

1 .
e (1,2)=— (Ay+Ay)—Ag+ By By cos by
+ By B; €08 043 +V,

2
where A; =%+ (n;+1) (:% — _C>

71
ni .
Bi=(i——;i=1or2;
1

Ag=mng (ng+1)[rs?; By=mnyfrs
¢0s Ozg = (1% + 152 —1;%)/2rr3

1 1 1
V=— (]E + E + E
q ==nuclear charge.
Tf e (1,2)=’;¢’(ﬂ£)
then Hp (1,2)=¢ (1,2) - ¢ (1,2)
and Hp= Hyp (1,2) £ Hp (2,1) (4a)
=(1 & Pyp) Hp (1,2) ~ (4b)

Equations (1b) and (4b) express quantities which must be evaluated over a set of
points.

D. Coordinates and Points

In a previous calculation on helium we selected a set of points and weighting
coefficients in interparticle coordinates by the method of Gauss quadrature [4].
Since one can easily write trial functions and the Hamiltonian in interparticle
coordinates, this system is a natural one to choose. Unfortunately, for an atom
with more than two electrons the non-differential part of the volume element,
which we use as part of the total weighting factor for each point, turns out to be
unbearably complicated in interparticle coordinates. To avoid this we chose the
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Gauss quadrature points in spherical coordinates and evaluated the weighting
factors using
dr =122 sin 0 1, dry dry dOy,,

and determined the value of the interelectronic distance r,, = r; for each point from
g2 = 1,241,227, 75 c08 0.

Actually we compute points in 7, and r, from the Gauss-Laguerre quadrature
tabular data and points in 6,, from the Gauss-Legendre data by means of simple
transformations [4, 6].

Because the points # < 0,5, < 2 are merely the refiection of those O < 0,
< & we considered only the latter group. We also eliminated all points where
7y < 1y, weighting those where r; > r, doubly since symmetry tells us that the
two groups yield identical configurations.

If P, =number of points in radial coordinates,
Py =number of points in angular coordinate,

then the total number of points N;g; is given by
Niot= Py 2P,

The number of points, reduced by the symmetry discussed above, is
1
Nsgp=5 Pr(Pr+1) Pe.

In these calculations the point distributions P,=358, Py=4 and P,=6, Py;=6
were used to produce sets of 60 and 126 symmetry reduced points respectively.

E. Results
1. Singlet State

1. Same ¢ for Same Shell. Using a wave function of exactly the same form as
that of our previous He atom calculation [4] and using the same distribution of
points among the coordinates, we now get E =—2.8968 Hartrees, V=1.51 x 102
compared with B =-—2, 8971 H, ¥ =1.79 x 102 before, which is good agresment
considering the different treatinent of Gauss points and weights.

In the present calculation many additional terms were included in the trial
function to aim at higher accuracy and to study the convergence of the computed
energy toward the observed as more terms are added. Tab. 1 shows these results.
The ¢;’s are the coefficients of the unnormalized wave function and n,, n,, n, are the
powers of ry, #,, r5 respectively.

In the calculations of Tab. 1 the exponential parameter {==1.816 was not
optimized with respect to the variance. Later an attempt was made to find an
approximate optimum value. The results of this search were:

a) The optimum value of { does not change smoothly as more terms are added
to the wave function.
b) For long wave functions (10 terms or more) the energy and variance are
rather insensitive to changes in {. A reasonable value seems to be ¢ =)/ —B(LS) =
7*
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Table 1. 118 Helium Atom Energy and Wave Function, 60 Gauss Points

{y = C = 1.816
Bewie = — 2.9025 Hartrees, V = 1.6 X 10— H2, Eops = — 2.9037*

i NyMaNg Ci i NNy o

1 000 1.000 16 220 — 0.0392
2 001 0.4849 17 221 — 0.0561
3 002 — 0.2694 18 222 — 0.0924
4 100 — 0.1380 19 300 0.0261
5 101 — 0.0384 20 301 0.0277
6 102 0.3070 21 302 0.0088
7 200 0.2673 22 310 — 0.0499
8 201 — 0.1923 23 311 — 0.0035
9 202 — 0.0861 24 312 —0.0279
10 110 —0.2841 25 320 0.0382
1 111 0.2628 26 321 — 0.0021
12 112 — 0.5384 27 322 0.0138
13 120 — 0.0255 28 330 — 0.0117
14 121 0.0680 29 331 0.0028
15 122 0.2093 30 332 — 0.0022

* (. L. PrxEr1s, Phys. Rev., 112, 1649 (1958).

1.7040, which is based on the asymptotic solution of the wave equation for an
atom
2 Lit=—28 (5)
2

with {; =C,. No extensive calculations were carried out using this value.

2. Difterent £’s for Same Shell. HyrLrrAAs [5] and EckART [1] were the first
to show that using different exponential parameters for electrons in the same
shell produced an improvement in the calculated energy. SEULL and Lorwbixn [7]
explained this as adding some measure of correlation to the wave function. In the
present work an attempt was made to study this effect with the least squares
local energy method using correlated wave functions. The results indicate that for
shorter wave functions one does indeed obtain lower variances and improved
energies when one includes different {’s in the two ground state orbitals, but for
longer wave functions (10 terms or more), the effect is no longer important; in
fact minimum variance occurred when £y = £,. This is easily explained by the fact
the wave functions used here already contained all important correlation effects
from the numerous r,, terms.

I1. Triplet State

1. Same ¢ for Different Shells. Requiving {; ={,, a search was made for an
approximately optimum single £ for the lowest 35 state. The results are similar to
those of the 1S case: here a good value seemed to be £ =} —E(3S) = 1.4749.
Further calculations employed this value. The results, using a 30 term trial
function and 126 points, were £ = — 2.1691 Hartrees, V = 4.9 x 10~-* while the
observed result is B = — 2.4752 H. Notice that the error in the energy computed
here is large compared with that of the 18 calculation, yet the averages were made
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over more than twice as many points and the wave function included terms of
fourth power in the radial coordinates.

2. Different {’s for Different Shells. Calculations showed that for the 385 state
using different {’s for the different orbitals lowers the variance and improves the
energy, even for long wave functions.

At this point another interesting problem was solved. The formula for the
Gauss-Laguerre quadrature is

[ eof () do = 21 Hf () (6)
[ 7=

where H; = Gauss weighting coefficient for abscissa a; and f(x) is a polynomial
in 2. Notice that the exponential appearing on the left of Eq. (6) is included in the
weighting coefficients on the right. The functions ¢ (1,2) are exponentials times
polynominals but after antisymmetrization and if different {’s are used for the
two orbitals the exponential part cannot be factored out completely.

p=eCirielarar, Py, Ma—eg {afr1eg (1Te 11727, ™M .
= ¢ l1ri+r2) [o (Lol oy Prpghe — e (Lo=Ci) 11y oy, ) (7a)

or
=eLalm+re) [e (C1—C2)my Ty pylte —e™ (L1l re 7,2 1, (7b)

If one persists in using different £’s beyond this point one must include part of the
exponential in the f(x) and ignore the fact that the equality in Eq. (6) no longer
holds. The question is: Which £ should be factored out? Should we follow 7a or 7b?
After some reflection one would favor the smaller of ¢, and &,. If £; << £,, then
e=C1 > e~{2 and the Gauss weighting factors would take care of the larger part of
the whole exponential while the e~ (2~{) remaining with the polynomial will
be small. A test calculation, using the scheme of Eq. (7a), gave values of the energy
which tended toward the observed energy quite smoothly, as additional terms were
added to the wave function, while erratic oscillations were obtained by proce-
dure 7b.

A search for approximate optimum values of {; and {, with respect to the
variance was simplified by considering the useful Eq. (5). Requiring Eq. (5) to
hold for {; + {,, the optimization problem reduces to one in a single parameter,
really A = {,— {;. Using 12 term functions the minimum variance was found near
Al ~or =1 and in further computation the values {; =0.86603 and £, - 1.8975 were
used. Tab. 2 contains the results of these calculations. The energy is in excellent
agreement with experiment.

F. Conelusions

Some interesting conclusions can be drawn from the results of this works:

1. The least squares local energy method is capable of producing energies
which are in remarkably good agreement with the observed values, particularly
when many terms are included in the trial function.

2. Different {’s should be used in writing orbitals for electrons in different shells.

One should not think of this as a simple correlation effect but as a genuine improve-
ment in the orbital description.
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3. The least squaxres local energy method, selecting points by Gaussian quadra-
ture, is capable of handling the different {’s even though the sums over the Gauss
points do not correspond to the integrals.

4. A useful device for selecting reasonable values of the exponential parameters
is the vesult of the asymptotic solution of the wave equation for an atom.

G. Computations

The actual computations were carried out on the IBM 709 computer at the
Northwestern University Computing Center using programs written in the
FORTRAN language.

As an example of the computing time: it took about {4 minutes to go through
the complete calculation, summarized in Tab. 2, of the best 30 term 38 function
over 126 points.
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Table 2. 2 38 Helium Atom Energy and Wave Function 126 Gauss Poinis
z, = 0.86603, £, = 1.8975
Eeare = — 2.1753 Hartrees, V = 1.5 x 10—8 H2, Eops = — 2.1752*

i Nty C; i Ny Mylig C;
1 000 1.0000 16 220 — 0.0090
2 001 0.6214 17 221 0.0028
3 002 0.0645 18 222 — 0.00016
4 100 — 1.0705 19 300 — 0.0582
5 101 —0.6711 20 301 —0.0191
6 102 — 0.0226 21 302 0.00041
7 200 — 0.1045 22 310 — 0.0093
8 201 0.1950 23 311 0.0042
9 202 0.00025 24 312 — 0.00009
10 110 — 0.0558 25 320 0.0011
11 111 — 0.0390 26 321 — 0.00054
12 112 0.0103 27 322 0.00004
13 210 0.1602 28 330 — 0.00003
14 211 —0.0239 29 331 0.00002
15 212 — 0.0011 30 332 — 0.000002

* C. L. Pexuris, Phys. Rev. 115, 1216 (1959).
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